首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11897篇
  免费   947篇
  国内免费   338篇
  2023年   90篇
  2022年   104篇
  2021年   334篇
  2020年   289篇
  2019年   351篇
  2018年   402篇
  2017年   318篇
  2016年   423篇
  2015年   679篇
  2014年   790篇
  2013年   861篇
  2012年   1079篇
  2011年   1019篇
  2010年   644篇
  2009年   541篇
  2008年   728篇
  2007年   648篇
  2006年   534篇
  2005年   490篇
  2004年   508篇
  2003年   396篇
  2002年   316篇
  2001年   252篇
  2000年   211篇
  1999年   207篇
  1998年   93篇
  1997年   62篇
  1996年   54篇
  1995年   62篇
  1994年   59篇
  1993年   44篇
  1992年   81篇
  1991年   75篇
  1990年   55篇
  1989年   48篇
  1988年   35篇
  1987年   24篇
  1986年   27篇
  1985年   25篇
  1984年   12篇
  1983年   17篇
  1982年   13篇
  1980年   20篇
  1979年   19篇
  1978年   12篇
  1977年   19篇
  1975年   14篇
  1974年   16篇
  1970年   12篇
  1969年   11篇
排序方式: 共有10000条查询结果,搜索用时 140 毫秒
41.
The hemiascomycetes yeast Yarrowia lipolytica is a dimorphic yeast with alternating yeast and mycelia forms. Bioinformatic analysis revealed the presence of three putative chitinase genes, YlCTS1, YlCTS2, and YlCTS3, in the Y. lipolytica genome. Here, we demonstrated that the protein of YlCTS1 (YlCts1p), which contains an N-terminal secretion signal peptide, a long C-terminal Ser/Thr-rich domain, and a chitin-binding domain, is a homologue to Saccharomyces cerevisiae chitinase 1 (ScCts1p). Deletion of YlCTS1 remarkably reduced extracellular endochitinase activity in the culture supernatant of Y. lipolytica and enhanced cell aggregation, suggesting a role of YlCts1p in cell separation as ScCts1p does in S. cerevisiae. However, loss of YlCts1p function did not affect hyphal formation induced by fetal bovine serum addition. The mass of YlCts1p was dramatically decreased by jack bean α-mannosidase digestion but not by PNGase F treatment, indicating that YlCts1p is modified only by O-mannosylation without N-glycosylation. Moreover, the O-glycan profile of YlCts1p was identical to that of total cell wall mannoproteins, supporting the notion that YlCts1p can be used as a good model for studying O-glycosylation in this dimorphic yeast.  相似文献   
42.
Sunghwan Kim  Hara Kang 《BMB reports》2013,46(11):550-554
The platelet-derived growth factor (PDGF) signaling pathway is essential for inducing a dedifferentiated state of vascular smooth muscle cells (VSMCs). Activation of PDGF inhibits smooth muscle cell (SMC)-specific gene expression and increases the rate of proliferation and migration, leading to dedifferentiation of VSMCs. Recently, microRNAs have been shown to play a critical role in the modulation of the VSMC phenotype in response to extracellular signals. However, little is known about microRNAs regulated by PDGF in VSMCs. Herein, we identify microRNA-15b (miR-15b) as a mediator of VSMC phenotype regulation upon PDGF signaling. We demonstrate that miR-15b is induced by PDGF in pulmonary artery smooth muscle cells and is critical for PDGF-mediated repression of SMC-specific genes. In addition, we show that miR-15b promotes cell proliferation. These results indicate that PDGF signaling regulates SMC-specific gene expression and cell proliferation by modulating the expression of miR-15b to induce a dedifferentiated state in the VSMCs. [BMB Reports 2013; 46(11): 550-554]  相似文献   
43.
Hydrogen sulphide (H2S) inhibits vascular smooth muscle cell (VSMC) proliferation induced by hyperglycaemia and hyperlipidaemia; however, the mechanisms are unclear. Here, we observed lower H2S levels and higher expression of the proliferation-related proteins PCNA and cyclin D1 in db/db mouse aortae and vascular smooth muscle cells treated with 40 mmol/L glucose and 500 μmol/L palmitate, whereas exogenous H2S decreased PCNA and cyclin D1 expression. The nuclear translocation of mitochondrial pyruvate dehydrogenase complex-E1 (PDC-E1) was significantly increased in VSMCs treated with high glucose and palmitate, and it increased the level of acetyl-CoA and histone acetylation (H3K9Ac). Exogenous H2S inhibited PDC-E1 translocation from the mitochondria to the nucleus because PDC-E1 was modified by S-sulfhydration. In addition, PDC-E1 was mutated at Cys101. Overexpression of PDC-E1 mutated at Cys101 increased histone acetylation (H3K9Ac) and VSMC proliferation. Based on these findings, H2S regulated PDC-E1 S-sulfhydration at Cys101 to prevent its translocation from the mitochondria to the nucleus and to inhibit VSMC proliferation under diabetic conditions.  相似文献   
44.
45.
A meta-cleavage pathway for the aerobic degradation of aromatic hydrocarbons is catalyzed by extradiol dioxygenases via a two-step mechanism: catechol substrate binding and dioxygen incorporation. The binding of substrate triggers the release of water, thereby opening a coordination site for molecular oxygen. The crystal structures of AkbC, a type I extradiol dioxygenase, and the enzyme substrate (3-methylcatechol) complex revealed the substrate binding process of extradiol dioxygenase. AkbC is composed of an N-domain and an active C-domain, which contains iron coordinated by a 2-His-1-carboxylate facial triad motif. The C-domain includes a β-hairpin structure and a C-terminal tail. In substrate-bound AkbC, 3-methylcatechol interacts with the iron via a single hydroxyl group, which represents an intermediate stage in the substrate binding process. Structure-based mutagenesis revealed that the C-terminal tail and β-hairpin form part of the substrate binding pocket that is responsible for substrate specificity by blocking substrate entry. Once a substrate enters the active site, these structural elements also play a role in the correct positioning of the substrate. Based on the results presented here, a putative substrate binding mechanism is proposed.  相似文献   
46.
Phospholipase D (PLD) regulates downstream effectors by generating phosphatidic acid. Growing links of dysregulation of PLD to human disease have spurred interest in therapeutics that target its function. Aberrant PLD expression has been identified in multiple facets of complex pathological states, including cancer and inflammatory diseases. Thus, it is important to understand how the signaling network of PLD expression is regulated and contributes to progression of these diseases. Interestingly, small molecule PLD inhibitors can suppress PLD expression as well as enzymatic activity of PLD and have been shown to be effective in pathological mice models, suggesting the potential for use of PLD inhibitors as therapeutics against cancer and inflammation. Here, we summarize recent scientific developments regarding the regulation of PLD expression and its role in cancer and inflammatory processes.  相似文献   
47.
Cryptococcus neoformans is an encapsulated basidiomycete causing cryptococcosis in immunocompromised humans. The cell surface mannoproteins of C. neoformans were reported to stimulate the host T-cell response and to be involved in fungal pathogenicity; however, their O-glycan structure is uncharacterized. In this study, we performed a detailed structural analysis of the O-glycans attached to cryptococcal mannoproteins using HPLC combined with exoglycosidase treatment and showed that the major C. neoformans O-glycans were short manno-oligosaccharides that were connected mostly by α1,2-linkages but connected by an α1,6-linkage at the third mannose residue. Comparison of the O-glycan profiles from wild-type and uxs1Δ mutant strains strongly supports the presence of minor O-glycans carrying a xylose residue. Further analyses of C. neoformans mutant strains identified three mannosyltransferase genes involved in O-glycan extensions in the Golgi. C. neoformans KTR3, the only homolog of the Saccharomyces cerevisiae KRE2/MNT1 family genes, was shown to encode an α1,2-mannosyltransferase responsible for the addition of the second mannose residue via an α1,2-linkage to the major O-glycans. C. neoformans HOC1 and HOC3, homologs of the Saccharomyces cerevisiae OCH1 family genes, were shown to encode α1,6-mannosyltransferases that can transfer the third mannose residue, via an α1,6-linkage, to minor O-glycans containing xylose and to major O-glycans without xylose, respectively. Moreover, the C. neoformans ktr3Δ mutant strain, which displayed increased sensitivity to SDS, high salt, and high temperature, showed attenuated virulence in a mouse model of cryptococcosis, suggesting that the extended structure of O-glycans is required for cell integrity and full pathogenicity of C. neoformans.  相似文献   
48.
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号